The Quantified Self and Clinical Decision Making: Understanding Clinical Decision Bias and Errors When Using Quantified Self Data

Mr Peter West (Health Sciences & ECS) (Presenter)
Dr Richard Giordano, Faculty of Health Sciences (PI)
Dr Max Van Kleek, SOCIAM, Web and Internet Sciences (CI)

Background

- An increasing number of people use pervasive and embedded technologies, such as mobile phones and wearable/implanted sensors, to record data about their daily lives, and store such data
- This may be referred to as *The Quantified Self*.

Promise of The Quantified Self

- It may prove useful to healthcare practitioners by providing information about both individual patient and population health
- It can assist general practitioners in making clinical decisions by providing insight into behaviours that may be a contributing cause of morbidity

Promise

- National Information Board of the Dept of Health publish Personalised Health and Care 2020: Using Data and Technology to Transform Outcomes for Patients and Citizens. A Framework for Action
 - Integration of health data (NHS) with personal data to support self-care and real-time diagnostics

Heuristics

- In GP settings, decision making is often based on heuristics and pattern recognition
- Research in both cognitive science and behavioural economics strongly suggest that heuristic decision making is plagued by bias and error

Rationale

- Given the dangers, the quality of clinical decision making may therefore deteriorate with the introduction of Quantified Self Data in healthcare settings
- ...but we don't know

Aims of the work

- Critique our methodology
- Develop a set of data-based hypotheses that can be tested in subsequent research

Methods

- Two narrative scenarios presented to clinicians in US and UK
 - The Man Who Wobbled
 - The Dizzy Student
- The scenarios are real with small modifications
- Presented patient-derived data
 - Pulse rate
 - Caffeine intake

Methods

- Participants asked to think aloud as they read through scenarios and examined data
- Open ended discussion
- Recorded, but not transcribed

Results

- Mistrust of patient-derived data
- Mistrust of instruments that were not calibrated and tested by doctors themselves
- Structure of information important to hospital doctors
- Representativeness bias
- Availability bias

Hypotheses

- H₁: Quantified self data lead to a belief that the patient is 'obsessive'
- H₂: Data are useful when clinicians can trust
 - The Data
 - The collection methods
 - The instruments
 - The mapping to a doctor's cognitive flow (e.g., Flow of information and data that support risk reduction)

Hypotheses

- H₃: Data appear relevant and useful when they map on to prior training
- H₄: Impedance mismatch
 - Presentation and structure of data
- H₅: Data useful when they support top-down risk mitigation

Further research

- Test hypotheses
- Influence clinician training and development
- Influence product development